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Abstract

We present a simple, principled approach to detecting
foreground objects in video sequences in real-time. Our
method is based on an on-line discriminative learning tech-
nique that is able to cope with illumination changes due
to discontinuous switching, or illumination drifts caused by
slower processes such as varying time of the day. Start-
ing from a discriminative learning principle, we derive a
training algorithm that, for each pixel, computes a weighted
linear combination of selected past observations with time-
decay. We present experimental results that show the pro-
posed approach outperforms existing methods on both syn-
thetic sequences and real video data.

1 Introduction

A key problem in video analysis is, given a relatively
static camera, to detect the moving objects in image se-
quences. This task provides fundamental low-level visual
cues that are necessary for further analysis. Traditionally,
separating foreground from background in video analysis
has been referred to as background subtraction. Essentially,
the problem is to classify each pixel in a given frame into
one of two categories: either part of a foreground object, or
part of the background scene.

Many existing background subtraction algorithms have
their roots in the 20th century film industry, where it was
observed that a background scene could be recovered by
exposing a film long enough to allow the moving objects
to wash out. This simple observation holds in many practi-
cal situations, and combined with the static camera assump-
tion, motivates the pixel process approach to background
subtraction that tracks the temporal variation of a single
pixel over the time. However, a naive pixel process ap-
proach based on fixed uni-modal distributions cannot cope

Figure 1: Three representative video sequences are pre-
sented that covers various situations, where for each video
sequence, three key frames are presented in the upper panels.
The left displays the rock video where the ore rocks falling
through the rejection chute. The middle one is an indoor se-
quence with lights switched on and off. The right sequence
contains a road traffic taken by a shaking camera. The three
panels on the bottom present the temporal dynamics of se-
lected pixel values for the corresponding scenarios.

with natural situations, such as those presented in Fig. 1
(drifting, jumping, and shaking), where the temporal vari-
ations of pixels are drawn from multi-modal and changing
distributions.

To cope with more realistic situations, many background
subtraction algorithms have been developed over the past
fifteen years. Although taking various forms, they tend to
follow a common scheme: since the foreground distribu-
tion is unknown, one instead maintains a temporal model
of the relatively static background scene, and detects fore-
ground objects as outliers in the background distribution.
Such an approach leads to great effort in properly estimat-
ing the background distribution, which might drift over the
time. Existing methods of this form can be generally classi-
fied into two categories: those that build generative models
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for the background scene, and those model the background
distribution with a non-parametric form.

The simplest, but still effective, generative approaches
are Adjacent Frame Difference (FD) [13] and Mean-Filter
(MF) [13]. As its name suggests, FD operates by subtract-
ing a current pixel value from its previous value, marking it
as foreground if absolute difference is greater than a thresh-
old. MF computes an on-line estimate of a Gaussian distri-
bution from a buffer of recent pixel values, and marks the
current value as foreground if its deviation from the mean
is more than a threshold. Wren et al. [15] and Friedman
et al. [4] proposed to use a single Gaussian, and a mix-
ture of Gaussians (MoG) respectively, to model the density
of a background pixel. Later, [12, 7] considered recursive
updating schemes for the mixture and Gaussian parameters
{w, pt, o}, to maintain a currently relevant model. To han-
dle a background that exhibits structured changes, such as
waves through water or trees, two research groups [16, 9]
have proposed to incorporate principal component analysis
(PCA) in MoG models.

Non-parametric methods maintain a background distri-
bution for a pixel based on a list of past examples. Vari-
ous kernel density estimates (KDEs) have been used for this
purpose in the past [3], including Parzen windows [2], and
more recently KDEs with variable bandwidth [8]. A major
drawback of these approaches, however, is that they ignore
the time-series nature of the problem. Moreover, KDE re-
quires training data from a sequence of examples that have
arelatively ‘clean’ background. These shortcomings can be
partially remedied by using a sequential approach [5] that
uses an iterative algorithm to predict the modes of the KDEs
in an on-line fashion.

In general, what we seek is a principled background sub-
traction algorithm for real-time video analysis that: (1) is
computationally efficient, (2) accurate, and (3) can rapidly
adapt to dynamic situations where the foreground back-
ground distributions change with time. Motivated by these
goals, and influenced by the work of online learning and
one-class support vector machines (1-SVM) [10, 6], we pro-
pose an Implicit online Learning with Kernels (ILK) that
exploits kernels to address this problem.

On-line discriminative learning Let d be the dimen-
sionality of the input space, and define a kernel mapping
k(-,-) from input space to a Hilbert feature space, R? — H
as ¢ — k(z,") € H. Here z € R? is an example and H
denotes the reproducing kernel Hilbert space (RKHS) with
induced kernel (-, -) such that f(z) = (k(z,"), f(:)) »,and
(-, -)n gives the inner product. To simplify notation, we use
(x, -}2¢ to denote (k(z, -), -)7. The norm in this case is nat-
urally defined as || - || =< -, - >%2.

Assume over the time, we observe a sequence of 7" ex-
amples (x4)~_,. In our approach, a separating function f ()
is to be predicted as a weighted combination of examples

08 Ba

Figure 2: An illustration of 1-SVM on a sample of examples
that motivates the proposed approach. The left panel depicts
one example of feature space with the separating hyperplane
f(-) (the solid lines), while the right panel shows the cor-
responding scenarios in input space, where the preimage of
f(-) behaves as a nonlinear function. The crosses (in the
left panels) and the corresponding dots (in the right panels)
represent observed examples accumulated during a certain
amount of time. + is the radius measuring the distance of the
separating hyperplane from origin.

[ (@) — X, ouk(xe,-), where past examples are asso-
ciated with different weights (a;)7_; (with a time decay)
derived formally from the large margin principle. Unfortu-
nately, past examples still have to be stored when evaluat-
ing the separating hyperplane f € H, which violates the
constraints for real time video analysis. To reduce the time
and memory requirements, we propose a modification to
obtain kernel classifiers based on limited support N, with
N << T, and approximates f by heuristically truncating
past examples with insignificant weights.

The benefits of the proposed approach are two fold.
First, it is simple to implement, and fast in evaluation time
with reasonable space complexity. Moreover, experiments
empirically demonstrates its good performance. Second, it
provide an alternative viewpoint of background subtraction,
which helps in understanding the nature of the problem.

2 The Proposed Approach

1-SVM and the Proposed Risk Functional

The proposed discriminative approach is motivated by
the large-margin principle [14] and especially 1-SVM [10]
for stationary distributions, where we are interested in pre-
dicting the optimal separating hyperplane f(-) in some
high-dimensional feature space. When ignoring the se-
quential nature of the examples sequence (z)-_,, Fig. 2
presents one example of such scenarios where the set of past
examples scattered in input space (right panel, as a mixture
of two Gaussians) and in corresponding feature space (left
panel). Regardless of the shape of the background distri-
bution, we estimate, in a proper feature space, a separating
hyperplane f that encloses as many background examples
as possible in the input space. The examples are then par-
titioned into the background data and the outliers accord-
ingly. Notice that f(-) are linear operators in the RKHS
space (straight lines in left panels), and due to the mapping
function ¢, the preimage of f is a nonlinear function in the
input space (curved lines in right panel). Further, the func-
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tion f(-) is determined solely from a weighted average of
the support vectors, shown as circular points in Fig.2, with
zero influence from the remaining examples. Therefore, the
proposed algorithm predicts a separating boundary f(-) that
is determined solely by a collection of the support vectors.
The presence of noise in the real world would make it al-
most impossible to find such a well-separated hyperplane
7).

In video surveillance, one observes a sequence of im-
ages. Each pixel over the time forms a sequence of exam-
ples .S, where the example x; is observed at time ¢. For the
pixel process at time ¢ + 1, we would like to predict a (non-
stationary) separating hyperplane f from the large-margin
principle. Intuitively, the new f should (a) be not far from
its past predictor, f;; (b) be bounded in term of its norm
I/ |l7¢; (c) satisfies the following 1-SVM type loss function:

Lz, f) = (L= f(2))+
= (1= (f, k(@e,)))+
where (-)+ = max{-,0}. Define A > 0 as a regularization

parameter, and and C' > 0 a constant. The risk functional is
then formulated as

(1)

1 A
R(f) = 51f = Fillie+ 51+ C L@, ),
—_——  —— Rive ()
Rdiv(f) )‘Rcap(f) inst

2

which consists of three terms: (a) the divergence risk,
Raiv(f), measures the distance of predicted f from previ-
ous prediction f;. (b) the capacity risk, Rcap(f), controls
the complexity of the prediction f. (c) the instantaneous
risk, Rinst(f) which is the 1-SVM type loss function (1)
times a constant. We would like to choose f minimizing
R(f). The following lemma which is an immediate re-
sult of the well known representer theorem (Theorem 4.2
of Scholkopf et al. [11]), tells us the representation form
that f will take.

Lemma 2.1. Let R.,, be a composite of functions as
Reap = Q|| flln) where Q : [0,00) — R is a strictly
monotonic increasing function. Let Rinst : H — R and
Raiv : H — R be strictly convex functions. Then there
exists a global minimizer f € F for the regularized risk
Raiv(f) + ARcap(f) + Rinst (f), which admits a represen-
tation of the form

t
FO) =" aik(xs, ) Ya; > 0 3)
=1

Robust Estimate of the Weights o

As a consequence of the above lemma, the optimal f of
problem (2) equals a weighted combination of past exam-
ples in the kernel space. Further, the weights {a;}_; is
explicitly obtained by the following theorem.

Theorem 2.2. In the online learning scenario, at time t, the
global minimizer of the risk functional (2) is unique, and
admits

t
feaa() = Zaik(fﬂi’ ) “4)
i=1
where
a =(1-7a; Vi<t
O lfOAét S [0,(1 —T)C], 5
a <=0 if oy <0, )
(1-7)C ifdy>(1—-71)C,
and
by = 1-(1- T)ft(mt)_

k(xt,xt)

The proof (detailed in [1]) turns out to be rather straight-
forward, after introducing the pair of variables, 7,v € R 4,
such that

T
A= .
1—7 ©)
To ease the notation, also denote
Li=1—(1-7)fe(xe). 7

The resultant representation formula of Theorem 2.2 is
efficient for predicting f;1, since we only have to compute
a; taking into account the most recently observed example
x¢, while the weights for those examples that occur a while
ago are naturally less-weighted by an exponential damping
term. That is,

ft+1(') 2221(1 - T)t_iaik(wi’ ) (8)
= (1=7)fi() + ck(zy, ).

Analysis of the parameters By solving the optimization
problem, we end up with an update form of the weight o,
that is always upper bounded by (1 —7)C. This formulation
ensures limited influence from outliers. Besides, the damp-
ing rate 7 € [0, 1) mainly balances the preference between
the capacity risk term R.q,(f) and the rest risk terms.

The ILK algorithm

The proposed ILK algorithm is able to cope with sta-
tionary background distributions, as described previously.
In particular, when the examples are drawn from a time-
varying distribution P(t), the algorithm can still predict a
reasonable separating hyperplane f, as long as the damping
rate 7 matches the drifting speed of P(t). However, In ILK,
the kernel expansion of the estimated f, as shown in Eq. (8),
requires entire past examples. In many practical domains,
especially in real-time applications, storing and manipulat-
ing all the past frames turns out to be non-realistic as the
amount of examples increases as t — oo. This leads to
SILK, a heuristic modification that aims at approximating
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Algorithm 1: The (ILK) Algorithm

Algorithm 2: The SILK Algorithm

Input The radius ~, cut-off value C, threshold €, damping rate T
Initialize f1 < 0
fort < 1to T do
Receive example z¢, compute ||x¢ H% = k(zt, x¢);
Compute {ft, x¢)3 according to Eq. (8);
Update Ly according to Eq. (7);
Update (a)f_; according to Eq. (5);

Assign label as B 1, L > e
L 0, otherwise.

©

end
Output The sequences (o), (yt)

the original f by kernel expansion of a sparse set of exam-
ples.

The SILK Algorithm

SILK aims at modifying algorithm ILK slightly to keep
a truncated set of past samples containing those with signifi-
cant weights. That is, for each pixel, a buffer of fixed size N

is held that contains the weight sequence 3 = (31, - - - , Bn)
in non-decreasing order, and the associated sparse set of ex-
amples as Z 2 (z1,---, 2n).

In brief, algorithm SILK works as follows. Initially the
buffer is empty with weights assigning to 3 = 0. At time
t, a weight a; is computed for the observed sample z;, we
attempt to insert oy into the weight sequence 3 in buffer,
and if successful, we also insert x; into Z. Notice that the
symbol “*X” indicates the remainder of the line is a com-
ment. For algorithmic convenience, We denote the aug-
mented weight sequence 3 = (31,---,3n,Bn+1) while
always set Sy+1 = oco. Note that the function f; evaluated
at x; is thus written as

N
(frrz)m =D Bik(zn, xt). (10)
Let o; ¢ (i < t) denote tirelweight of kernel expansion
k(x;,-) at time ¢t. Denote the mapping of the index of ex-
ample in buffer S of size N to the set of examples .S of size
T (N <<T)asN:5 — S:j— i, where |S| = N,
|S| = T. We present the result of the analysis about the
effect of truncation errors in the following lemma, its proof
can be found in [1].

Lemma 2.3 (Truncation Error of SILK). Let the non-
truncated representation of the separating function be

FO) =" k(@i ), (12)
i=1

and the truncated approximation is
fO= > aidk(i,).

i=1,4€N(j)

13)

Then the truncation error is upper bounded by

~ ~ _\N+1
17 =il < =" op, (14)

which decreases exponentially as the size of buffer N in-
creases.

Input The radius ~y, cut-off value C, threshold €, damping rate T,
and the set of sparse kernels Z with associated weights 3 in
non-decreasing order
Initialize (51, - ,6n) < 0, BN41 + oo and
Z «— random values
for t — 1to T do
Receive data z¢, compute ||act||$_l = k(zt, x¢);
Compute (ft, x¢ )3 according to Eq. (10);
Update Ly according to Eq. (7);
Update ot according to Eq. (5);
W Insert oy and x; into the sorted sequences 3 and Z.;
for j «— 1to N +1do
if oy < 3; then
if 7 > 1 then
Insert  into the sequence
B—(,Bi—1,at,B5, )
Insert x; into the sequence
Z <= ( 7Zj_17.1}t72j7“');
Remove 31 from 3;
Remove z; from Z;
end
Break;

end
end

Assign label as " { 1, fi>e

0, otherwise.

an

end
Output 3, Z and the sequence (yz)

Complexity Analysis

By looking at the proposed algorithms above, it is easy to
conclude that the SILK algorithm is both computationally
more efficient and less memory demanding than ILK. To
see in detail, consider making predictions on a sequence of
examples (z;)._;. The space complexity of ILK is (d +
)T for the {(a)Z_,, (z+)L_,} sequences, comparing with
(d + 1)N for the sequences {(5;)q,(Z;)_,} of SILK,
where N << T In terms of computational complexity for
a sequence of length 7', the running time for ILK is O(T'?),
comparing with O(NT') for SILK.

120,

100

separable inseparable Drifing Jumping

Figure 3: Com(sgirisons of six backgroun(gbs)ubtraction algo-
rithms (a) on sequences of examples drawn from stationary
distributions of mixture of two Gaussians, where The y-axis
presents the cumulative mistakes. (b) on the drifting (left)
and the jumping (right) scenarios, respectively, where The
y-axis presents the average mistakes.
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3 Experiments

We conduct experiments on both synthetic data se-
quences and real world video sequences, and compare the
results of the proposed ILK/SILK algorithms with exist-
ing background subtraction methods: FD, MF, MoG and
KDE. The FD and MF algorithms are implemented as stated
previously, the MoG algorithm is implemented based upon
[12, 7], and the KDE algorithm is adopted from [3]. Gaus-
sian kernels are adopted for the proposed approach for all
experiments, and the internal parameters of all above back-
ground subtraction algorithms are tuned for best perfor-
mance.

Experiments on Synthetic Data

To explore the performance of the proposed and ex-
isting background subtraction algorithms, three types of
two-dimensional synthetic sequences are considered, where
a large quantity of background examples are maintained
against a relative small amount of foreground examples in
all scenarios. The first scenario is generated from station-
ary distributions of the background (and the foreground),
where each consists a mixture of two Gaussians. We then
consider the scenarios of drawing from changing distribu-
tions, in specific, we will investigate the drifting and the
Jjumping background distributions. We focus on the separa-
ble scenario where all examples that would be misclassified
by the Bayes optimal classifier are dropped off. In all of the
three cases, a mixture of Gaussians is employed to generate
the background examples, and similarly for foreground.

In Fig. 3a, each position along the horizontal axis
presents one stationary distribution, while a set of stationary
distributions are arranged from left to right according to the
decrease of separability that ranges from separable cases to
inseparable cases. The vertical axis shows the average cu-
mulative mistakes. The curve of each algorithm presents av-
erage cumulative mistakes over 20 iid sequences. As such,
three non-parametric algorithms — KDE, ILK and SILK —
make least average cumulative mistakes. MoG makes com-
parably more mistakes, while MF and FD make frequent
mistakes since the stationary background model is a mix-
ture of Gaussians.

ILK and SILK seem to be good at dealing with scenarios
where the sequence of examples are drawing from either
drifting or jumping distributions. This is clearly revealed
from Fig. 3b, where SILK makes slightly more mistakes
than ILK, but are superior than other algorithms. Besides,
KDE empirically perform on par with MoG on both situa-
tions.

Experiments on Video Sequences

Extensive experiments have been conducted on various
scenarios of video sequences. A network of SILK machines
is employed with each concentrated on tracking the tempo-
ral dynamic of one pixel from the video sequence, and is
compared against the MoG, KDE, MF and FD algorithms.

w

Frame 173 Frame 1101

Ground Truth KDE

MoG (k=2)

MoG (k=2)
=
MF FD MF

(a) (b) (c)

)
Faso Pesitie

Figure 4: (a)A comparison of five algorithms on the 173th
frame of the rock sequence. FD fails for this task due to the
fast sliding speed of the rocks. Notice KDE and MoG miss
the clumps in the red curve while SILK still detects them.
(b) ROC curve of five algorithms on the indoor data. (c)
A comparison on the 1101th frame of the indoor sequence
when the lights are just switched off. The result of SILK and
FD are shown to adapt to this jumping situation faster than
the rest algorithms.

During the following comparisons, A buffer size N = 20 is
used for SILK, 30 past frames are used for MF, k = 2 (or
k = 3) is used for MoG, and the related parameters of the
algorithms concerned are turned for best performance.

The rock video of Fig. 1 (left) is taken from an ore min-
ing site, where the ore rocks are falling through the rejec-
tion chute. A grey-scale surveillance camera is mounted on
top of the chute to monitor the realtime processing, where
statistical information is to be collected about the number
and sizes of the ore fragments passed by. The bottom-left
panel presents the characteristic temporal dynamics of one
background pixel and one chute pixel, where both exhibit
drifting behaviors, mostly due to the spreading of the dust
fog. Even for a human observer, some fragments are very
hard to be distinguished from the background scene due to
similar appearance. Fig. 4a displays the obtained results on
the 173th frame, where SILK detects the true foregrounds
(ore rocks) as good as MF, with much less false alarms. Ob-
viously, both KDE and MoG miss the several clumps on the
top-right corner. FD does the worst, mostly due to the fast
sliding speed of the ore rocks passing through the chute.

The middle panels of Fig. 1 presents an indoor video se-
quence where the lights are switched off and back on. As
illustrated in the bottom-middle panel, it is close to the situ-
ation with a jumping distribution. Again, the ROC curve in
Fig. 4b demonstrates good overall performance of the SILK
algorithm. In specific, SILK is shown to be more adaptive
to this jumping situation than most of the background sub-
traction algorithms, as presented in Fig. 4c for frame 1101,
where FPs are fixed to be close to 0.01. MF perform worst
due to its slow adaption to the switch of lights.

The right panels of Fig. 1 present one traffic sequence
taken by a camera that shakes irregularly. This results in a
switched multi-modal distributions as demonstrated in the
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[10] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and
R. Williamson. Estimating the support of a high-dimensional
distribution. Neural Computation, 13:1443-1471, 2001.

[11] B. Scholkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[12] C. Stauffer and W. Grimson. Learning patterns of activity
using real-time tracking. PAMI, 22:747-757, 2000.

[13] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.
Wallflower: Principles and practices of background mainte-
nance. In ICCV, 1999.

[14] V. Vapnik. Statistical Learning Theory. Wiley, New York,

< _ 1998.
Figure 5: This figure presents, in scan-line order, the ob- [15] C. Wren, A. Azarbayejani, T. Darrell, and A. Pantland.
served image, the confidence map, the result without false Pfinder:real-time tracking of the human body. PAMI,
suppression and the result with false suppression, of the 19(7):780-785, 1997.
SILK algorithm on one road traffic sequence of frame 1552. [16] J. Zhong and S. Sclaroff. Segmenting foreground objects

from a dynamic textured background via a robust Kalman

bottom-right panel. However, since the shaking motion is filter. In ICCV, 2003.

neither periodical nor with a constant strength, the sequence
turns out to be very challenging for any background subtrac-
tion algorithm. As presented in Fig. 5b, SILK still manages
to obtain satisfactory results. Further details including the
ROC curve are described in [1].

4 Conclusion and Future Work

In this paper, an online discriminative approach is pro-
posed to address a key problem in video analysis — fore-
ground background separation. The proposed approach is
derived from an online risk minimization framework, and
is shown in experiments to outperform existing algorithms.
The current work involves more about the temporal dynam-
ics of the pixel processes, our future work will focus on
exploiting the spatial properties of the sensor fields and the
label fields to further improve the performance.
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